A Variant of the Hales-jewett Theorem

نویسنده

  • MATHIAS BEIGLBÖCK
چکیده

It was shown by V. Bergelson that any set B ⊆ N with positive upper multiplicative density contains nicely intertwined arithmetic and geometric progressions: For each k ∈ N there exist a, b, d ∈ N such that ̆ b(a + id) : i, j ∈ {1, 2, . . . , k} ̄ ⊆ B. In particular one cell of each finite partition of N contains such configurations. We prove a Hales-Jewett type extension of this partition theorem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A variant of the density Hales-Jewett theorem

In a recent paper “A variant of the Hales-Jewett theorem”, M. Beiglböck provides a version of the classic coloring result in which an instance of the variable in a word giving rise to a monochromatic combinatorial line can be moved around in a finite structure of specified type (for example, an arithmetic progression). We prove a density version of this result in which all instances of the vari...

متن کامل

Reading “A variant of the Hales-Jewett theorem” on its anniversary

In [B], M. Beiglböck proves a curious extension of the Hales-Jewett theorem, in which one of the occurrences of the variable in a variable word giving rise to a monochromatic combinatorial line is allowed to move around in a finite set of a predetermined class P (say, arithmetic progressions of fixed length). However, his proof is daunting in its use of heavy algebraic/topological machinery. Fo...

متن کامل

Ramsey Theory: Van Der Waerden’s Theorem and the Hales-jewett Theorem

We look at the proofs of two fundamental theorems in Ramsey theory, Van der Waerden’s Theorem and the Hales-Jewett Theorem. In addition, we study bounds on Van der Waerden numbers.

متن کامل

The First Nontrivial Hales-Jewett Number is Four

We show that whenever the length four words over a three letter alphabet are two-colored, there must exist a monochromatic combinatorial line. We also provide some computer generated lower bounds for some other Hales-Jewett numbers.

متن کامل

Corners in Cartesian products

This note is an illustration of the density-increment method used in the proof of the density Hales-Jewett theorem for k = 3. (Polymath project [2]) I will repeat the argument applying it to a problem which is easier than DHJ. In the last section I will describe the proof of the density Hales-Jewett theorem for k = 3. The results stated here are direct interpretations of the project’s results, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008